83 research outputs found

    Phylogenetic and Biogeographic Controls of Plant Nighttime Stomatal Conductance

    Get PDF
    The widely documented phenomenon of nighttime stomatal conductance (gsn) could lead to substantial water loss with no carbon gain, and thus it remains unclear whether nighttime stomatal conductance confers a functional advantage. Given that studies of gsn have focused on controlled environments or small numbers of species in natural environments, a broad phylogenetic and biogeographic context could provide insights into potential adaptive benefits of gsn. We measured gsn on a diverse suite of species (n = 73) across various functional groups and climates‐of‐origin in a common garden to study the phylogenetic and biogeographic/climatic controls on gsn and further assessed the degree to which gsn co‐varied with leaf functional traits and daytime gas exchange rates. Closely related species were more similar in gsn than expected by chance. Herbaceous species had higher gsn than woody species. Species that typically grow in climates with lower mean annual precipitation – where the fitness cost of water loss should be the highest – generally had higher gsn. Our results reveal the highest gsn rates in species from environments where neighboring plants compete most strongly for water, suggesting a possible role for the competitive advantage of gsn

    Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change

    Get PDF
    Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. Here we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess the vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models

    Detecting forest response to droughts with global observations of vegetation water content

    Get PDF
    Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure–volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions—which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts

    Comparing Model Representations of Physiological Limits on Transpiration at a Semi-arid Ponderosa Pine Site

    Get PDF
    Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved process representations in ecosystem models. We compare semi-empirical stomatal models with hydraulic constraints against more mechanistic representations of stomatal and hydraulic functioning at a semi-arid pine site using a suite of metrics and analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Although models can be parameterized to yield similar functional performance, alternate parameterizations could not overcome structural model constraints that underestimate the unique information contained in soil water potential about transpiration. Additionally, both multilayer canopy and big-leaf models were unable to capture the magnitude of canopy temperature divergence from air temperature, and we demonstrate that errors in leaf temperature can propagate to considerable error in simulated transpiration. This study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize ecosystem function and discriminate among model process representations

    When a tree dies in the forest : scaling climate-driven tree mortality to ecosystem water and carbon fluxes

    Get PDF
    Altres ajuts: COST FP1106 network STReESS.Drought- and heat-driven tree mortality, along with associated insect outbreaks, have been observed globally in recent decades and are expected to increase in future climates. Despite its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where the effects of mortality are a function of the mortality attributes, such as spatial clustering and functional role of the trees killed, and ecosystem properties, such as productivity and diversity. We draw upon remote-sensing data and ecosystem flux data to illustrate this framework and place climate-driven tree mortality in the context of other major disturbances. We find that emerging evidence suggests that climate-driven tree mortality impacts may be relatively small and recovery times are remarkably fast (~4 years for net ecosystem production). We review the key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of variation needed for better monitoring and modeling of the impacts of tree mortality and provide a foundation for including climate-driven tree mortality in a disturbance framework

    Vegetation demographics in Earth System Models: A review of progress and priorities

    Get PDF
    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication

    Woody plants optimise stomatal behaviour relative to hydraulic risk

    Get PDF
    Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon‐maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.W.R.L.A. acknowledges funding for this research from NSF 1714972 and from the USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro-Ecosystem Management, grant no. 2017-05521. We thank T. Brodribb and one anonymous reviewer for their insightful reviews, B. Medlyn and Y.S. Lin for sharing data and R. Norby for providing Vcmax data for several species. We appreciate the assistance from Marion Feifel in collecting data of leaf photosynthetic parameters of five European tree species. S.L. acknowledges financial support from the China Scholarship Council (CSC). VRD acknowledges funding from a Ram on y Cajal fellowship (RYC-2012-10970). B.T.W. was supported by the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. DJC acknowledges funding from the National Science Centre, Poland (NN309 713340)

    Ground deformation analysis at Campi Flegrei (Southern Italy) by CGPS and tide-gauge network

    Get PDF
    Campi Flegrei caldera is located 15 km west of the city of Naples, within the central-southern sector of a large graben called Campanian Plain. It is an active volcanic area marked by a quasi-circular caldera depression, formed by a huge ignimbritic eruption occurred about 37000 years ago. This caldera was generated by several collapses produced by strong explosive eruptions (the last eruption, occurred in 1538, built an about 130 m spatter cone called Mt. Nuovo). Campi Flegrei area periodically experiences significant deformation episodes, with uplift phenomena up to more than 3.5 m in 15 years (from 1970 to 1984), which caused during 1983-84 the temporary evacuation of about 40000 people from the ancient part of Pozzuoli town. The deformation field obtainable by CGPS and tidegauge stations plays an important role for the modelling and interpretation of volcanic phenomena, as well as for forecasting purposes. The structural complexity of the Campi Flegrei area, together with the evidence of a strong interaction between magmatic chamber and shallow geothermal system, calls for a detailed characterization of the substructure and of magma-water interaction processes. The incoming experiment of deep drilling, down to about 4 km, will give detailed structural and physical constraints able to resolve the intrinsic ambiguities of geophysical data and in particular geodetic ones. In this poster we describe the recent ground deformations at Campi Flegrei area by means of GPS technique and tide gauge stations, discussing the possible interpretations also in light of further constraints likely coming from the next CFDDP (Campi Flegrei Deep Drilling) deep drilling experiment
    • 

    corecore